|
第1回
|
Descriptive Statistics
|
Learn and apply measures of central tendency and dispersion.
|
第2回
|
DescriptiveStatistics
|
Learn and apply correlations, linkages, and cross tabulation tables.
|
第3回
|
Probability
|
Learn and apply probability distribution, normal distribution, binomial distribution, and standardization of data.
|
第4回
|
Estimated Statistics
|
Learn and apply estimators.
|
第5回
|
Interval Estimation
|
Learn and apply interval estimation.
|
第6回
|
Test of the Difference of Proportions
|
Learn and apply χ2 Test.
|
第7回
|
Test of the Mean Difference
|
Learn and apply t-tests.
|
第8回
|
Bayesian Statistics
|
Learn and apply the fundamentals of Bayesian statistics. The course also covers the concept of statistical power.
|
第9回
|
Introduction to Machine Learning
|
Learn and apply sorting and algorithms, cloud services and big data, types of machine learning.
|
第10回
|
Supervised Machine Learning
|
Learn and apply regression analysis (single regression, multiple regression, polynomial regression).
|
第11回
|
Supervised Machine Learning
|
Learn and apply various classification algorithms, including Logistic Regression and k-Nearest Neighbors (k-NN). This section also covers model evaluation, including techniques for data splitting and the use of different evaluation metrics.
|
第12回
|
Supervised Machine Learning
|
Learn and apply various classification algorithms, including SVM, decision trees, random forests).
|
第13回
|
Unsupervised Machine Learning
|
Learn and apply clustering.
|
第14回
|
Unsupervised Machine Learning
|
Learn and apply principal component analysis.
|
第15回
|
Supervised Machine Learning
|
Learn and apply neural networks.
|
第16回
|
Supervised Machine Learning
|
Learn and apply convolutional neural networks.
|
|
※AL(アクティブ・ラーニング)欄に関する注 ・授業全体で、AL(アクティブ・ラーニング)が占める時間の割合を、それぞれの項目ごとに示しています。 ・A〜Dのアルファベットは、以下の学修形態を指しています。 【A:グループワーク】、【B:ディスカッション・ディベート】、【C:フィールドワーク(実験・実習、演習を含む)】、【D:プレゼンテーション】
|