タイトル

開講年度 開講学部等
2025 大学院創成科学研究科(博士前期)
開講学期 曜日時限 授業形態 AL(アクティブ・ラーニング)ポイント
前期 水7~8 講義 2.0
時間割番号 科目名[英文名] 使用言語 単位数
3261110030 粘性流体力学特論[Viscous Fluid Dynamics] 日本語 2
担当教員(責任)[ローマ字表記] メディア授業
蒋 飛[SHO Hi]
担当教員[ローマ字表記]
蒋 飛 [SHO Hi]
特定科目区分   対象学生   対象年次  
ディプロマ・ポリシーに関わる項目 カリキュラムマップ(授業科目とDPとの対応関係はこちらから閲覧できます)
授業の目的と概要
Focus of the lecture is placed on analyzing turbulence phenomena. In the first half, we learn mathematical analysis in hydrodynamics and learn about boundary layer approximation and similarity with solution equation of motion including nonlinear convection acceleration term. In the second half we will understand the Reynolds equation which is the fundamental equation of turbulence, the derivation method of turbulence kinetic energy equation and the term which plays a major role such as turbulence production and dissipation term. Understand that boundary layer equations and similarity also play an important role in deriving analytical solutions even in turbulent flow.
授業の到達目標
In this course, students will learn methods to understand turbulent structure based on the equations of motion for viscous fluids, and develop the ability to approach industrial turbulent phenomena using fundamental equations and order-of-magnitude analysis. Students will cultivate the ability to quantitatively analyze flow problems by appropriately selecting mathematical analyses and experimental results, and by utilizing numerical analysis and similarity laws. Furthermore, the course emphasizes developing interest in fluid analysis and acquiring advanced knowledge and analytical skills related to advanced technologies in mechanical engineering and the environmental and aerospace fields.
授業計画
【全体】
Methods to handle fluid motion by mathematical analysis and give lecture to express by differential equation.
Taking lectures on the use of partial differential equations including nonlinearity and the relationship between the role of boundary layer approximation and similarity.
Lecture on the Reynolds equation in turbulence and the meaning and role of Reynolds stress.
For the stopping problem, the turbulent energy dissipation mechanism is the key, and that is explained.
We explain the basic structure of turbulent boundary layer and jet, and explain that boundary layer approximation and similar solution are useful.
項目 内容 授業時間外学習 備考
第1回 Expression of motion and material differentiation Analysis can be applied by expressing a fluid as a continuum model, and material differentials are used by Eulerian observations, based on continuous conditions. Study the contents taught in class.(Recommended study time: 4 hours or more)
第2回 Basic equations of viscous fluid and exact solution of Navier-Stokes equation As setting stress based on Newton's viscous law and defining external force from stress, we derive the Navier-Stokes equation which is a basic equation of viscous fluid. In solving nonlinear equations, we will explain how to set exact solutions by setting conditions, and that the obtained exact solution plays a wide range of roles. Study the contents taught in class.(Recommended study time: 4 hours or more)
第3回 Numerical solution of incompressible viscous fluid 1 Diffusion equation Learn about the numerical analysis of the Navier-Stokes equations for incompressible viscous fluids. The differential solution method for the diffusion equation will be explained. Assignment on Numerical Methods for Solving the Diffusion Equation (Recommended Study Time: 4 Hours or More)
第4回 Numerical Solution of Incompressible Viscous Fluids 2 Advection Equation Learn about the numerical analysis of the Navier-Stokes equations for incompressible viscous fluids. The difference solution method for the advection equation will be explained. Study the contents taught in class.(Recommended study time: 4 hours or more)
第5回 Numerical Solution of Incompressible Viscous Fluids 3 Advection and diffusion Equation Learn about the numerical analysis of the Navier-Stokes equations for incompressible viscous fluids. The difference solution method for the advection-diffusion equation will be explained. Study the contents taught in class.(Recommended study time: 4 hours or more)
第6回 Numerical Solution of Incompressible Viscous Fluids 4 SMAC Method and Pressure Poisson Equation Numerical analysis of the Navier-Stokes equations for incompressible viscous fluids, including the SMAC method and the pressure Poisson equation. Analysis Assignment on Cavity Flow Using the SMAC Method (Recommended study time: 4 hours or more)
第7回 Boundary layer Explain the concept of the boundary layer and explain how to derive the boundary layer equation from the Navier-Stokes equation by order analysis. Study the contents taught in class.(Recommended study time: 4 hours or more)
第8回 Boundary layer approximation Explains how to solve the boundary layer equations. Assignment on the Derivation and Numerical Solution of the Blasius Equation. (Recommended study time: 4 hours or more)
第9回 Treatment of turbulent flows Explain the definition and handling of turbulence. Learn about Reynolds decomposition and time average. Study the contents taught in class.(Recommended study time: 4 hours or more)
第10回 Equations for turbulent flows We derive a continuous equation and a motion equation for turbulence. Explain the physical meaning of the Reynolds equation. Study the contents taught in class.(Recommended study time: 4 hours or more)
第11回 Turbulence energy equation and energy balance Explain the generation term and the dissipation term of the turbulent energy equation. Based on the local isotropic theory, the turbulent energy equilibrium is proposed and explains that it plays an important role for the closer problem. Study the contents taught in class.(Recommended study time: 4 hours or more)
第12回 Turbulent boundary layer We apply multilayer structure of turbulent boundary layer and boundary layer approximation. Study the contents taught in class.(Recommended study time: 4 hours or more)
第13回 Wall law and defect law We describe the representative similar side to the velocity distribution of turbulent boundary layer wall law and deficit law and give lecture on its role.
第14回 Turbulent jets Turbulent jet and its properties are analaized to understand self-similarity and conservation of momentum.
第15回 Last examination The last examination is offered for stuents to confirm degree of understand. noting
※AL(アクティブ・ラーニング)欄に関する注
・授業全体で、AL(アクティブ・ラーニング)が占める時間の割合を、それぞれの項目ごとに示しています。
・A〜Dのアルファベットは、以下の学修形態を指しています。
【A:グループワーク】、【B:ディスカッション・ディベート】、【C:フィールドワーク(実験・実習、演習を含む)】、【D:プレゼンテーション】
A: --% B: --% C: 20% D: --%
成績評価法
The evaluation will be based on in-class quizzes and reports.
Quizzes: 20%, Reports: 80%.
教科書にかかわる情報
教科書 書名 工科系 流体力学 ISBN 9784320080362
著者名 中村育雄, 大坂英雄 出版社 共立出版 出版年 1985
備考
参考書にかかわる情報
備考
Some text books are usefull for students to understant turbulence.
"A first course in Turbulence" publised by MIT press and "Turbulent flows" publised by Cambridge university press are good for students in begining stage.
メッセージ
You will find materials for understand deeply the subject with key word "Turbulence" or "Boundary Layers".
キーワード
Turbulence, Shear Flows, Boundary Layer, Similarity
持続可能な開発目標(SDGs)

  • エネルギーをみんなに そしてクリーンに
  • 働きがいも経済成長も
  • 産業と技術革新の基盤をつくろう
  • つくる責任つかう責任
(エネルギー)すべての人々の、安価かつ信頼できる持続可能な近代的エネルギーへのアクセスを確保する。
(経済成長と雇用)包摂的かつ持続可能な経済成長及びすべての人々の完全かつ生産的な雇用と働きがいのある人間らしい雇用(ディーセント・ワーク)を促進する。
(インフラ、産業化、イノベーション)強靱(レジリエント)なインフラ構築、包摂的かつ持続可能な産業化の促進及びイノベーションの推進を図る。
(持続可能な生産と消費)持続可能な生産消費形態を確保する。
関連科目
Hydraulics, Fluid Mechanics, Fluids Enginnering
履修条件
連絡先
fjiang@yamaguchi-u.ac.jp
オフィスアワー
Lunch break12:00-13:00

ページの先頭へ