|
|
|
|
メディア授業とは,メディアを利用して遠隔方式により実施する授業の授業時数が,総授業時数の半数を超える授業をいいます。 メディア授業により取得した単位は,卒業要件として修得すべき単位のうち60単位を超えないものとされています。
|
|
|
|
One of the crucial points in measurement lies in appropriate processing and interpretation of signals measured by sensors. This class focuses brain computer interface (BCI) which connects minds with machines as one of the applications of the measurement technology. BCI typically consists of acquisition of weak brain signals originated from neurons or neural populations in a brain, reduction of various noises contaminating the signals, extraction of features reflecting the intentions and discrimination of the intentions. Namely, BCI decodes the user's intention through the three steps of signal acquisition and preprocessing, feature value extraction and intention classification. Since the establishment of BCI needs approaches from both hardware and software, BCI is a prototypical example of advanced system measurement. The purpose of this class is not only to acquire technical observations from the signal acquisition to mind decoding but also to foster a comprehensive perspective including ethics for measurement. Note: This class will be conducted with English slides based on English textbooks. Explanations will be given in Japanese.
|
|
|
|
|
|
|
1. Acquisition of mathematical knowledge required for measurement. 2. Acquisition basic neuroscience observations. 3. Understanding of the measurement technology of brain signals. 4. Acquisition of basic signal processing and machine learning techniques. 5. Understanding of the outline of invasive BCI, semi-invasive BCI and non-invasive BCI, respectively.
|
|
|
|
This class begins with mathematical basics, fundamental neuroscience, measurement techniques of brain signals and signal processing and machine learning basics and then proceeds to variety of BCIs and its applications and BCI ethics. We discuss how the basic measurement technologies are exploited to decode minds by accumulating each observation and technique.
|
|
|
|
第1回
|
1. Guidance 2. Brain computer interface (BCI) 3. Fundamentals of mathematics 1
|
1. Outline of the class 2. Concept of BCI 3. Vectors, matrices and linear algebra
|
第2回
|
1. Fundamentals of mathematics 2 2. Basic neuroscience
|
1. Probability theory 2. Basic neuroscience (such as neuron)
|
第3回
|
1. Basic neuroscience 2 2. Recording and stimulating the brain 1
|
1. Organization and function of brain 2. Recording signals from the brain1.
|
第4回
|
1. Recording and stimulating the brain 2 2. Signal processing 1
|
1. Stimulating the brain 2. Frequency domain and time domain analyses
|
第5回
|
1. Signal processing 2
|
1. Spatial filtering and related signal processing methods
|
第6回
|
1. Signal processing 3 2. Machine learning 1
|
1. Artifact reduction techniques 2. Classification techniques
|
第7回
|
1. Machine learning 2
|
1. Multi-class classification and evaluation of classification performance
|
第8回
|
1. Machine learning 3 2. Building BCI
|
1. Regression technique 2. Major types of BCIs
|
第9回
|
1. Invasive BCIs 1
|
1. Invasive BCIs in animals
|
第10回
|
1. Invasive BCIs 2 2. Semi-invasive BCIs 1
|
1. Invasive BCIs in humans 2. Electrocorticographic BCIs
|
第11回
|
1. Semi-invasive BCIs 2 2. Non-invasive BCIs 1
|
1. BCIs based on peripheral nerve signals 2. Electroencephalographic BCIs
|
第12回
|
1. Non-invasive BCIs 2 1. BCIs that exploit stimulation
|
1. Non-invasive BCIs other than electroencephalographic BCIs 2. Sensory and motor restorations
|
第13回
|
1. Bidirectional and recurrent BCIs 2. Applications of BCI1
|
1. Bidirectional BCI for control of a robot 2. Medical applications of BCI
|
第14回
|
1. Applications of BCI2 2Ethics of BCI
|
1. Nonmedical applications of BCI 2. Medical, health and safety issues 3. Abuse of BCI technology 4. BCI security and privacy 5. Legal issues 6. Moral and social justice issues
|
第15回
|
Final Exam.
|
Final examination
|
第16回
|
Review
|
Review the final exam.
|
|
※AL(アクティブ・ラーニング)欄に関する注 ・授業全体で、AL(アクティブ・ラーニング)が占める時間の割合を、それぞれの項目ごとに示しています。 ・A〜Dのアルファベットは、以下の学修形態を指しています。 【A:グループワーク】、【B:ディスカッション・ディベート】、【C:フィールドワーク(実験・実習、演習を含む)】、【D:プレゼンテーション】
|
|
|
|
A: --% B: --% C: --% D: --%
|
|
The grade for this subject is evaluated based on the presentation in class, homework and final exam. Presentation 5 pts, homework 55 pts and final exam. 40 pts.
|
|
|
|
|
|
備考
Hand-outs will be provided each class via Moodle.
|
|
|
|
|
BCI is a typical measurement system that consists of a combination of detection of weakly biological signals, signal processing and classification of minds. Most of the measurement techniques used in BCI can be applied to other fields as well as BCI. Participants are encouraged to have motivation to utilize knowledge of these digital signal processing techniques to own research and future work.
|
|
|
|
Measurement, System, Brain computer interface
|
|
|
|
(保健)あらゆる年齢のすべての人々の健康的な生活を確保し、福祉を促進する。 |
(インフラ、産業化、イノベーション)強靱(レジリエント)なインフラ構築、包摂的かつ持続可能な産業化の促進及びイノベーションの推進を図る。 |
|
|
Advanced System MeasurementI
|
|
|
|
|
nisifuji[at]yamaguchi-u.ac.jp [at] denotes @.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|