|
|
|
|
メディア授業とは,メディアを利用して遠隔方式により実施する授業の授業時数が,総授業時数の半数を超える授業をいいます。 メディア授業により取得した単位は,卒業要件として修得すべき単位のうち60単位を超えないものとされています。
|
|
|
|
Learn the development methodologies for products that combine large-scale machines, software, and circuits, such as automobiles. By learning a world standard language for describing product structures, students will learn model-driven development methods that satisfy a variety of engineering constraints.
This lecture will be conducted by a professor who has practical experience in developing new automobile at an automobile company.
|
|
|
|
|
|
|
Learn modeling methods for mechatronic products that integrate mechanical, software, and circuit systems. Understand and become proficient in SysML. Understand and become proficient in Modelica. Acquire the ability to perform multidisciplinary design and optimization. Develop a comprehensive perspective to understand systems as a whole by integrating various fields. Learn design support methods for AI integration and inspire interest and motivation aligned with global trends. Express behavioral specifications using SysML. Build physical models such as electrical circuits, hydraulic systems, and vibration transmission using Modelica.
|
|
|
|
First, learn a modeling language such as SysML or Modelica, and then work on practice tasks using the language you have learned. Finally, we will present the model we built in the exercise.
|
|
|
|
第1回
|
Model-driven development management of complex products
|
Learn the history of model-driven development management of complex products.
|
第2回
|
Design diagram of electromechanical software composite product SysML
|
Lesson about Design diagram of electromechanical software composite product SysML
|
第3回
|
Modeling of automobile brake system and power control using SysML
|
Lesson about Modeling of automobile brake system and power control using SysML
|
第4回
|
Product function and structure, manufacturing model M-BOM, E-BOM
|
Lesson about Product function and structure, manufacturing model M-BOM, E-BOM
|
第5回
|
Software model UML, state transition diagram, sequence diagram, use case diagram
|
Lesson about Software model UML, state transition diagram, sequence diagram, use case diagram
|
第6回
|
Parametric diagrams to clearly incorporate requirements into product definition
|
Lesson about Parametric diagrams to clearly incorporate requirements into product definition
|
第7回
|
Modelica, a physical phenomenon model for electrical circuits, hydraulic systems, vibration transmission, etc.
|
Lesson about Modelica, a physical phenomenon model for electrical circuits, hydraulic systems, vibration transmission, etc.
|
第8回
|
Importance of upstream design support and 1DCAE
|
Lesson about Importance of upstream design support and 1DCAE
|
第9回
|
Automotive thermal and materiel modeling using 1DCAE using SimulationX
|
Lesson about Automotive thermal and materiel modeling using 1DCAE using SimulationX
|
第10回
|
Enterprise architecture modeling
|
Lesson about Enterprise architecture modeling
|
第11回
|
BPMN, BPEL for business modeling and improvement
|
Lesson about BPMN, BPEL for business modeling and improvement
|
第12回
|
Requirements model connecting marketing and product development
|
Lesson about Requirements model connecting marketing and product development
|
第13回
|
Complex product development process management and DSM
|
Lesson about Complex product development process management and DSM
|
第14回
|
Supply chain management and SCORE
|
Lesson about Supply chain management and SCORE
|
第15回
|
Multi-site development and concurrent engineering of product families
|
Lesson about Multi-site development and concurrent engineering of product families
|
第16回
|
Summary of lectures so far and final assignment
|
Lesson about Summary of lectures so far and final assignment
|
|
※AL(アクティブ・ラーニング)欄に関する注 ・授業全体で、AL(アクティブ・ラーニング)が占める時間の割合を、それぞれの項目ごとに示しています。 ・A〜Dのアルファベットは、以下の学修形態を指しています。 【A:グループワーク】、【B:ディスカッション・ディベート】、【C:フィールドワーク(実験・実習、演習を含む)】、【D:プレゼンテーション】
|
|
|
|
A: 20% B: 30% C: 30% D: 20%
|
|
The understanding of each topic will be comprehensively assessed through assignment reports. Attendance is a mandatory requirement to pass the course.
Attendance: Mandatory requirement (failure to meet this condition will result in disqualification) Quizzes and in-class reports: 20% Homework and out-of-class reports: 30% Class attitude and participation: Mandatory requirement (failure to meet this condition will result in disqualification) Student presentations: 20% Exercises: 20%
|
|
|
|
|
|
備考
Academic papers will be the main reference and information source. Lecture materials and report assignments will be distributed each time.
|
|
|
|
|
備考
Academic papers will be the main reference and information source.
Lectures will focus on academic papers and handouts in order to cover the latest topics. Although not books that can be used directly, the following are reference books that provide a good summary of information in this field.
Sanford Friedenthal, Alan Moore, Rick Steine: A Practical Guide to SysML Tim Weilkiens: Systems Engineering with SysML/UML: Modeling, Analysis, Design
|
|
|
|
Learn the latest technology that can be used in development sites. Develop a perspective of synthesis, not just analysis.
|
|
|
|
Mechanical Design, Product Development, SysML, Modelica, 1DCAE, BPMN, SCORE, DSM(Design Structure Matrix), MDM(Multi Domain Matrix), DMM(Domain Mapping Matrix)
|
|
|
|
(貧困)あらゆる場所のあらゆる形態の貧困を終わらせる。 |
(飢餓)飢餓を終わらせ、食料安全保障及び栄養改善を実現し、持続可能な農業を促進する。 |
(水・衛生)すべての人々の水と衛生の利用可能性と持続可能な管理を確保する。 |
(エネルギー)すべての人々の、安価かつ信頼できる持続可能な近代的エネルギーへのアクセスを確保する。 |
(インフラ、産業化、イノベーション)強靱(レジリエント)なインフラ構築、包摂的かつ持続可能な産業化の促進及びイノベーションの推進を図る。 |
(持続可能な都市)包摂的で安全かつ強靱(レジリエント)で持続可能な都市及び人間居住を実現する。 |
|
|
Mechanical Design Mechanical Systems Design
|
|
|
|
|
電子メール 古賀:koga アット yamaguchi-u.ac.jp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|